Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly.
نویسندگان
چکیده
Coding of sensory information often involves the activity of neuronal populations. We demonstrate how the accuracy of a population code depends on integration time, the size of the population, and noise correlation between the participating neurons. The population we study consists of 10 identified visual interneurons in the blowfly Calliphora vicina involved in optic flow processing. These neurons are assumed to encode the animal's head or body rotations around horizontal axes by means of graded potential changes. From electrophysiological experiments we obtain parameters for modeling the neurons' responses. From applying a Bayesian analysis on the modeled population response we draw three major conclusions. First, integration of neuronal activities over a time period of only 5 ms after response onset is sufficient to decode accurately the rotation axis. Second, noise correlation between neurons has only little impact on the population's performance. And third, although a population of only two neurons would be sufficient to encode any horizontal rotation axis, the population of 10 vertical system neurons is advantageous if the available integration time is short. For the fly, short integration times to decode neuronal responses are important when controlling rapid flight maneuvers.
منابع مشابه
Gender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model
Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...
متن کاملResponse Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster
The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster has made them a model system for the study of neuronal cell-fate determination, axonal path finding, and target selection. For functional studies, however, the small size of the constituting visual interneurons has so far presented a formidable barrier. We have overcome this problem by establishing in viv...
متن کاملEncoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual interneurons of the blowfly with naturalistic visual stimuli reconstructed from eye movements measure...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کاملبررسی اثر تنش خشکی بر جمعیت و خسارت مگس گلرنگ ( Acanthiophilus helianthi )، شته گلرنگ ( Uroleucon carthami ) و زنجرک Empoasca decipiens
Safflower having oil with high unsaturated fatty acids is a very valuable plant. However the sensitivity of safflower to some pests as safflower fly (Acanthiophilus helianthi), particularly in drought stress conditions has limited its production. In order to evaluate the effect of drought stress on population density and damage of important safflower pests, especially safflower fly, an experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2005